Part Number Hot Search : 
DIP05 M5218F FQS4410 TXN40K 4232GM 98DX8216 M67204H MTNK5S3
Product Description
Full Text Search
 

To Download IRFI540N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet IRFI540N pd - 9.1361a 3/16/98 v dss = 100v r ds(on) = 0.052 w i d = 20a s d g to-220 fullpak l advanced process technology l isolated package l high voltage isolation = 2.5kvrms ? l sink to lead creepage dist. = 4.8mm l fully avalanche rated parameter min. typ. max. units r q jc junction-to-case CCCC CCCC 2.8 r q ja junction-to-ambient CCCC CCCC 65 thermal resistance parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 20 i d @ t c = 100c continuous drain current, v gs @ 10v 14 a i dm pulsed drain current ?? 110 p d @t c = 25c power dissipation 54 w linear derating factor 0.36 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ?? 300 mj i ar avalanche current ?? 16 a e ar repetitive avalanche current ? 5.4 mj dv/dt peak diode recovery dv/dt ?? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1n?m) absolute maximum ratings description fifth generation hexfets from international rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. the to-220 fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. the moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. this isolation is equivalent to using a 100 micron mica barrier with standard to-220 product. the fullpak is mounted to a heatsink using a single clip or by a single screw fixing. preliminary c/w
IRFI540N parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 100 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.11 CCC v/c reference to 25c, i d = 1ma ? r ds(on) static drain-to-source on-resistance CCC CCC 0.052 w v gs = 10v, i d = 11a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 11 CCC CCC s v ds = 50v, i d = 16a ? CCC CCC 25 v ds = 100v, v gs = 0v CCC CCC 250 v ds = 80v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 v gs = -20v q g total gate charge CCC CCC 94 i d = 16a q gs gate-to-source charge CCC CCC 15 nc v ds = 80v q gd gate-to-drain ("miller") charge CCC CCC 43 v gs = 10v, see fig. 6 and 13 ?? t d(on) turn-on delay time CCC 8.2 CCC v dd = 50v t r rise time CCC 39 CCC i d = 16a t d(off) turn-off delay time CCC 44 CCC r g = 5.1 w t f fall time CCC 33 CCC r d = 3.0 w, see fig. 10 ?? between lead, 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 1400 CCC v gs = 0v c oss output capacitance CCC 330 CCC v ds = 25v c rss reverse transfer capacitance CCC 170 CCC ? = 1.0mhz, see fig. 5 ? c drain to sink capacitance CCC 12 CCC ? = 1.0mhz nh a na i dss drain-to-source leakage current i gss l s internal source inductance CCC CCC ns s d g 4.5 7.5 electrical characteristics @ t j = 25c (unless otherwise specified) CCC l d internal drain inductance CCC CCC CCC pf parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) showing the i sm pulsed source current integral reverse (body diode) ?? p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 11a, v gs = 0v ? t rr reverse recovery time CCC 170 250 ns t j = 25c, i f = 16a q rr reverse recoverycharge CCC 1.1 1.6 c di/dt = 100a/s ?? source-drain ratings and characteristics a CCC CCC 110 CCC CCC 20 s d g notes: ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? v dd = 25v, starting t j = 25c, l = 2.0mh r g = 25 w , i as = 16a. (see figure 12) ? t=60s, ?=60hz ? i sd 16a, di/dt 210a/s, v dd v (br)dss , t j 175c ? uses irf540n data and test conditions ? pulse width 300s; duty cycle 2%.
IRFI540N fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics 1 10 100 1000 0.1 1 10 100 i , drain-to-source current (a) d v , drain-to-source volta g e (v) ds vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 20s pulse width t = 25c c a 4.5v 1 10 100 1000 0.1 1 10 100 4.5v i , drain-to-source current (a) d v , drain-to-source voltage (v) ds vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 20s pulse width t = 175c c a 1 10 100 1000 45678910 t = 25c j gs v , g ate-to-source volta g e ( v ) d i , drain-to-source current (a) v = 50v 20s pulse w idth ds t = 175c j a 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 j t , junction temperature (c) r , drain-to-source o n resistance ds(on) (n orm alized) v = 10v gs a i = 27a d
IRFI540N fig 7. typical source-drain diode forward voltage fig 5. typical capacitance vs. drain-to-source voltage fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage 0 400 800 1200 1600 2000 2400 1 10 100 c, capacitance (pf) ds v , drain-to-source voltage (v) a v = 0v, f = 1m hz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss 0 4 8 12 16 20 0 20 40 60 80 100 q , total g ate charge (nc) g v , g ate-to-source voltage (v) gs v = 80v v = 50v v = 20v ds ds ds a for test circuit see figure 13 i = 16a d 10 100 1000 0.4 0.8 1.2 1.6 2.0 t = 25c j v = 0v gs v , source-to-drain volta g e (v) i , reverse drain current (a) sd sd a t = 175c j 1 10 100 1000 1 10 100 1000 v , drain-to-source voltage (v) ds i , drain current (a) operation in this area limited by r d ds(on) 10s 100s 1ms 10ms a t = 25c t = 175c single pulse c j
IRFI540N fig 9. maximum drain current vs. case temperature fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms fig 11. maximum effective transient thermal impedance, junction-to-case v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectan g ular pulse duration ( sec ) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 175 0 5 10 15 20 t , case temperature ( c) i , drain current (a) c d
IRFI540N fig 12a. unclamped inductive test circuit fig 12b. unclamped inductive waveforms v ds l d.u.t. v dd i as t p 0.01 w r g + - t p v ds i as v dd v (br)dss 10 v q g q gs q gd v g charge 10 v d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 13b. gate charge test circuit 0 100 200 300 400 500 600 700 25 50 75 100 125 150 175 j e , single pulse avalanche energy (mj) as a starting t , junction temperature (c) v = 25v i top 6.6a 11a bottom 16a dd d
IRFI540N p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - * v gs = 5v for logic level devices ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * fig 14. for n-channel hexfets peak diode recovery dv/dt test circuit
IRFI540N package outline to-220 fullpak outline dimensions are shown in millimeters (inches) to-220 fullpak part marking information lead assignments 1 - g ate 2 - d ra in 3 - so u rc e notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982 2 controlling dimension: inch. d c a b minimum creepage distance betw een a-b-c-d = 4.80 (.189) 3x 2.85 (.112) 2.65 (.104) 2.80 (.110) 2.60 (.102) 4.80 (.189) 4.60 (.181) 7.10 (.280) 6.70 (.263) 3.40 (.133) 3.10 (.123) ? - a - 3.70 (.145) 3.20 (.126) 1.15 (.045) m in . 3.30 (.130) 3.10 (.122) - b - 0.90 (.035) 0.70 (.028) 3x 0.25 (.010) m a m b 2.54 (.100) 2x 3x 13.70 (.540) 13.50 (.530) 16.00 (.630) 15.80 (.622) 1 2 3 10.60 (.417) 10.40 (.409) 1.40 (.055) 1.05 (.042) 0.48 (.019) 0.44 (.017) part number international rectifier lo go date code (yyw w ) yy = year ww = week assembly lot co de e401 9245 irfi840g exam ple : th is is an ir fi840g w ith assem bly lo t co d e e401 a world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 3/98


▲Up To Search▲   

 
Price & Availability of IRFI540N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X